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PERTURBATIONS IN THE MOTION OF ARTIFICIAL SATELLITES
DUE TC THE ELLIPTICITY OF THE EARTH

by
V. F. Proskurin and Yu. V., Batrakov
/8¢ T8 A

Literal expressions have been received for first order perturbations
in the orbital elements of artificial satellites of the Earth accurate to
the first power of the Earth's flattening and the fifth power of the or-
bital excentricity through. The coefficients of these expressions depend
on the inclination of the orbit by means of trigonometrical polynomials.
More accurate expressions are given for secular first order perturbations
in the longitude of the node, in the argument of the perigee and in the
mean anomaly. The secular motion of the node has been determined with ac-

count of second order perturbations due to the Earth's flattening. A
numerical example illustrates the comparative value of the perturbations.
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One of the major causes of the orbital deviation of artificial satei-
lites from the unperturbed Keplerian ellipses is the nonspherical shape of
the Earth. And the greatest perturbations in the motion of the satellites
are due to the ellipticity of the earth.

The problem of determining the motion of a satellite in the gravita-
tional field of a flattened planet has been tackled before in connection
with the development of the theories of motion of large planet satellites.
But a number of orbital characteristics of the artificial satellites make
it impossible to utilize the available methods for the development of a
theory of their motion. Chief among them are the orbital inclination of
the artificial satellites and their proximity to the Earth's surface.

It_is therefore necessary to develop a new analytic theory that could
be applied to artificial satellites with any orbital inclination toward the
equatorial plane, and would be sufficiently accurate even in the case of
satellites traveling in the immediate vicinity of the Earth's surface.

It is now assumed that the planet is shaped like an oblate[?] [Urovennyy]




ellipsoid of revolution, and that its flattening is s0 insignificant that

its third power may be disregarded. The part of the perturbation function
under consideration is expanded in series according to the degree of eccen-
tricity; the coefficients of the series are the trigonometric functions of
inclination. The integration of the Lagrange equations produced analytical
expressions for perturbations of the first order in relation to the compres-
sion of all the orbital elements, accurate to the fifth power of eccentricity
inclusive. Purely secular terms of the motion of a node in the satellite or-
bit have been obtained from the perturbations of the second order in rela-
tion to the oblateness.

l. Formulating the Problem. Expanding
the Perturbation Function

Let a zero mass satellite (S in the figure) move in the gravitational
field of the Earth whose surface is shaped like an ellipsoid of revolution.
The oblateness of the barth and its angular velocity may be considered as in-
significant -magnitudes. The resistance of the atmosphere is not taken into
consideration.

The potential of the oblate[?}[Urovennyyl] ellipsoid of revolution on
an external point, accurate to the second power of oblateness, looks like the

following
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where f is the gravitation constant, m tne mass of the marth, r the radius-

vector of point S, a' the equatorial radius of the Earth, & the deviation of




the satellite. The coefficients J and D are defined by the following for-

mulas
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D=%{5]+9),

2,1
m=- (1—3),
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where £ is the flattening of the earth ellipsoid, and @ the angular speed
of its revolution.
If perturbation function R, which is defined by formula (1), is limit-
ed to the first power of ellip}};ity, then
R=—1yme 5 s 1), (3)
To expand function’R into ;e;ies according to the degree of eccentric-
ity of the satellite's orbit, it would be practical to begin by transform-
ing expression (3). From the spherical triangle SNS' we find that
2 sin8==sin7 sin(v +:w), (&)
where i is the orbital incline, ; the true anomaly, w the angular distance
from perigee to the node (perigee argument). Substituting (4) in (3) and
carrying out some transformations, we get
= -;— Jfm Z—: [(2 — 343 (.r“_) -+ 312 cos 20 (—:_’—)3 cos 2v — 3)["' sin 20 (_ra_)3 sin 2«)], (5)
where a is the large orbital semiaxis, and N\ = sini for purposes of brev-
ity. The expansion in series based on the multiples of mean anomoly M (Sub-
botin, 1937) can be used for the following combinations (%)3, () cos 20, (£)’ sin2e

We will write these expansions out to the sixth power of eccentricity e, in-

clusive.
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Substituting (6) in (3), we get the final expression for R, correct to

3369
=% sin 8M.

the sixth power of eccentricity
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2. Perturbations of the First Order

The Lagrange formulas used to define the osculating elements look like

the following (Subbotin, 1937)
da _ 2 OR !

dt ~ na 0e

de__; v — et R e'v»]_cz‘ 1 .d_li
dt T Tndle uw 1-+-vV1—=e2 na* 08’
i
di coseci AR tgy JOR . OR)
dr na?vi—et A9 na2Vl — e2 0% ac J?
49 cosec i .%. ‘ \ (8)

T g Vi—et 00

i
dn %2 R vI—& R
At T aaVli— e 0i na’e  Oe’
de 2 9R ey R  eVI—=2 1 R
0 na ta ' Vi 9 1avVi—e nat de’
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where a, €, I, Y, =

:=®~*43ﬂe'repfesent six elements of the satellite orbit, n
the average motion, and R the perturbation function.

we should point out that in the equation for % , the derivative%?fis-also
raised to a negative e power. This reduces the accuracy of the expression
of the first order in element 7t , so that the expression €37 |, required for
the definition of the perturbed radius-vector and longitude of the satel-
lite is accurate only to the fifth power of eccentricity. The perturbations
and other elements should be defined with such accuracy, even though they
could be determined to the sixth power of eccentricity inclusive.

bxpanding the coefficients of the right parts of (8) by degree of ec-
centricity and substituting R from (7), we will get, after integrating (8),

the following expressions for the first-order perturbations of the elliptiec

elements in the satellite orbit:
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The resulting perturbations of the elements can be used for computing

the perturbed states of the artificial satellites. The following formulas

are used for that purpose

~

MzM‘, -+ n. ([ — fn) -+ ;"1" - bl"_ 3 nojaladt

E=M--esinE,

r=a(l—ecos E),
[+e, F
tg ;— = l‘/_:ﬁ-f ’cO"l;-
uz==ov-t-u,
x==r(cosucos & —sinu sin 2 cos i),

y==r{cosusin 2~ sinucos C cos i),

zz==rsinusini,




where the letters with zero indices indicate the values of the unperturb-
ed elements. Ve should point out the secular perturbations are found only
in the elements ¥, =,z . They are absent in the other elements.

3. Secular Perturbations of the First Order

The most important among the perturbations of the first order are the
secular perturbaﬁions, as they determine the evolution of the orbit in the
course of time., It is therefore useful to know the secular disturbances
to a higher degree of accuracy.

The special structure of the perturbation function makes it possible to
find the secular disturbances in their final form without rescrting tc an
expansion in series based on the degree of eccentricity.

The computation of the secular disturbances can be more conveniently
done by replacing the elementsT}E‘with & and Mb which are defined by the
following formulas

w=z—%, M=:—n=

The Lagrange equations for the elements % h& %3, look like the feollow-

dw cig i R V1—e? IR

ing dt T L aviZ E i T Tnate e ‘ (10)
My T R_2 IR
dt 7T nate oo ne da "

¥We will designate the coefficients of the secular disturbances of ele-
ments {1, (€ | Mo by Q', &', Mé, respectively. We will also introduce, as
an independent variable, the true anomaly which is connected with t in the
following formula rdv=\Vim\va(l— &) dt.

We will then have

2r |

1 C s dw d
[ e r-——acv .
¢ 2% Vim Va (1 — 2%) | dt ’
2%
L 1 | ed2 g (11)
Q T T TR T , r —a‘t‘ Uy
N fmva(l —2) p
2n
. 1 L dM,
M = e :2;— r —_dt dU.
0 2mVfmvVall—e?)



Formulas (11) produce the coefficients O',0', MS on the assumption
that the %af magnitude has been selected as a unit of time, where T is the
pericd of the satellite's revolution around the Earth. If a Zb-hour day
is to be taken as a unit of time, the right-hand parts of formulas (11)
should be multiplied by the average daily motion of satellite n, and if the
latter is expressed in radians or degrees, the resulting coefficients Q',
', M; will alsoﬁbe expressed in radians or degrees.

The calculation by formulas (11), following the multiplication of the

right-hand parts by n, will producel
Oros (T _cosi
j(a) (IT—ezi

w ==t 7fa'\25cos2i—1 12
' ](ﬂ) (1—¢2)2 n, ( )
"{1:)2§f252i —1

a (1 — (_,‘.3)":":

pey o

~

n.

1

2
=1

2

From the above it will be easy to form expressions for the coeffi-
cients of the secular perturbaticns?’ and £€ . We have

Y (?LY Scosti—Zcosi—1
24\ a--ay

I

(13)

m

’ 1 .74 2(s 43V —e2)cosi—2cosi—1—V]I_—el
2-[ ‘ — 7.

R (11— %2

We can see from (12) that the secular motion of a noderreaches its max-
imum at i = O, 180°, that is when the orbit lies in the equatorial plane.
At i = 900, that is in case the orbital plane crosses the Earth's pole, {1'
= 0. The secular motion of the perigee reaches a maximum at i = O, 180° and
is reduced to zero at i = 63026'. The secular motion of the element Mb

reaches a maximum at i = O, 180° and is reduced to zero at i = S4°hk',

L, Calculating Perturbations of the First Order

We will use an orbit with the following elements as an example of cal-

culating perturbations of the first order:  =:7286.88 x,
¢=:0.099493,
[ = 65%4900.

H
1. (Expressions for the coefficients i and e ' were obtained’in t@e work
of D. Ye. Okhotsimskiy, T. M. Eneyev and G. P. Taratynova {1957]}).
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We will also assign the following values to the constants a' and J:

«' ==6378.39 kv,
J=0.00164147, .

Substituting the adopted values of the orbital elements and constants

a' and J in formulas (9), we get the final expression for the perturbations

of the first order produced by the Earth's ellipticity:
6,0 =-—0.445 cos M —0.066 cos2M —0.010 cos 3M — 0.001 cos 4M —
—0.376 cos (M 4+ 20)-+-7.401 cos (2M 4+ 20)+
+2.584 cos {3M-1- 20) + 0.624 cos (43 + 20) +
+0.131 cos (547 4-20) +0.024 cos (6} -+ 20),
tie = —0.0003046 cos b~ (.0C 0454 cos 24 — 0.0000066 cos 3M —
—0.0000002 cosall 1 0.0002601 cos (M - 20)+
~+0.0000003 :os (/. - 20) — 0060251 cos QM —+ 2w) +
+-0.0005824 cos (37 v 2¢1 -+ 0.0002119 cos (4M -+ 20) +
-+ 0.0000524 c¢os (544 -1 2¢+)-+0.0000113 cos (6M -+ 20) +
=+ 0.000002¢5 cos (TM 4 2wv),

60 =-—0700136 ccs (A -+ 20) +-0.01333 cos (2M -+ 20) +
~+ 0200310 cos (3M -1 2¢) -+ 000562 cos (4M ~+ 2w) +
~+ 0500009 cos(SM -1 Z.0)-i-0.00001 cos (6M + 2u),

Q= —-2.67416¢ - 0.00°07 sin M — 0.00067 sin2M —
—0°00007 sin 3/7— 0700001 sin 43/ — 0500149 sin (M + 20) +
+0.01465 sin (2M - 2¢) + 0700341 sin (3M —+ 20) + ;
~+ 0200062 sin (4M -1-2¢) + 0.00010 sin (SM - 20) + g
iy -+ 0.00002 sin(6M + 2w), :

o
o

i

0,2 = —4277356t -—0.01625 sin M — 090015{1 sin2M —
—0200016 sin3/7— 0200002 sin4M; — 0°00894 sin (M + 2w) -+ |
40209471 sin (¢M - 20) -+ 0202376 sin (3M 4 20) + |
-+ 0700461 sin (43 + 2w) + 0700080 sin (5 M+ 20) +-
- -+0.00014 sin (63 + 2w),

11




ety = —0°31079¢ — 0.01546 sin M — 000267 sin 2M —
- —0%00038 sir 3M --0.00005 sin 4M — 000001 sin SM —
—0701488 sin (M~ 20} —0.C0649 sin (2M + 2w) +
-+ 0200002 sin (1/ — 2+ 4- 0703259 sin BM + 20) -
~+ 0701203 sin (¢ M =- 2+) <+ 0°00299 sin (OM + 20) +
+ 0200062 sin (€ M -2} + 0700012 sin (TM + 20) +
~+ 0200007 sir (8M -~ 2u).

Here the coefficients of the periodic perturbations of the large semi-
axis are given in kilometers, but in the secular perturbations of the ele-
ments 2, & ,7T , the time should be presented in mean solar days.

The above-cited numerical values provide a clear idea of their magni-
tude.

Thus in the large semiaxis, the periodic perturbations with the argu-
ments (2M + 24 ) and (3M + 24 ) are the most important, and their ampli-
tudes are 7.4 and 2.6 kilometers. The greatest perturbation in the eccen~
tricity has an argument (3M + 24J) and can produce a 4.2 deviation from the
perigee altitude.

The greatest periodic perturbations in the other elements amount to
several minutes of the arc. Thus there are fairly large perturbations in

all the elements which should be taken into consideration.

5. Secular Perturbations of the Second Order
in the Motion of a Node

The secular motion of a node is the most important feature of the mo-
tion of artificial satellites, as it can be very accurately determined from
observations, on the one hand, and can be used for a more precise defini-
tion of the contraction of the Earth, on the other. The theoretical expres-
sion for the secular motion of a node should therefore be known as thorough-
ly as possible. Below is a calculation of the second order perturbations

in relation to contraction in the motion of a node.
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The longitude of an ascending node is defined by the following formula

€' coseci JR . (14)

a nyIVy — e;-{ g ?

where R is defined by formula (7).
We will designate the right part of the formula for 2 as Q and present
it as

Qla, e,i, 0, M) = Na~ 1% [‘—1—38 cos M+

~+ cos (2M+-20) — e cos (M +20)+ e cos (3M + 20) , (15)

whereJN::jVZh'd2i is the coefficient depending on the constants connected
with the Earth.

In (15) we limited ourselves to the first power of eccentricity in
order to obtain the secular perturbations, correct to the zero power of ec-
centricity.

Expanding the right part of the equation for (2 by degree of perturba-
tion of the elements, we find that

do (16)

—J;‘—;Q(a, e, I, w’,M),;::Q—F%_S 3,0+ ?‘(3" d.e 4 dd—lz s b+ %%BIM-»

The unperturbed values of the elements should be represented in the
right part of (16) in Q, as well as in its derivatives. After appropriate
transformations and integration, the right part (with the exception of the
term Q which, when integrated, produces 61, {1) will show the perturbations
of the second order in relation to the oblateness in Q.

Since (9) does not contain any expressions for S« perturbations, we

will make use of the following known relationships

“ - < 3 n i
SM =8z — om — 5 TJ sadt,

0Q __ 0  Q_ iQ
o8 dw de — oM ¢ (17)
o 0Q Q _d_Q_
o==—0, ZL=—(5 5.
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Assuming that szgoa-gg—k 224 ---, where Qo is a constant and 6iﬂ

perturbations of the i-th order, we will find from (16), bearing (17) in
mind, that

90 C 9 iQ Q. 9Q._ 3 n Q. Ty,
-=”:W310+"“°1 +—Q—oz+ 50 L—l—?s—bl.;—i—- olu———;————j olaa't_!a’f.

The calculation of individual integrals produces the following secular

terms:

R T el - 2
—al- KNI —7 (-——3‘ cos- 20 — —§3L) nt,

|

S
—
~

22 0,0dt =5 J(£) (1=t |
j‘% 8,edt = % a (ij;-\)4 V1--22 (1— ; )F) (——3——;— cos 2(0) nt + é
+_(13_ J (%)4 W] — 0t (———3 cos 20 —231) nt, E
f% 3,=dt :-; f:(_"(‘/_y v1- —Tz(l—% iR )(——3+ ; cost) nt —
1
5

)
40 vmm 3 (2] T
_..;_f( >\]»/—(\/l-—l‘——1—}—/)nf
[ e Jat = () VTR |

Here we .ind the following expression for the coefficient of the secu-

lar perturbation in the motion of a node of the order of the square coeffi-
cient of J:
. afd'\' =50 19 ., 5
Hp=/2(5) VIZE (R —3)n. (18)
It is not difficult to obtain also the coefficient of the secular per-
turbation in the longitude of a node of the first power in relation to magni-

tude D. Here we should use the fourth equation of system (8), and take the

following expression as perturbation function
R—— fma (35 sin'5—30 sin’6—+ 3).

The calculations produce the follow1ng expression for the secular motion

of a node occasioned by this term of the perturbation function:

14



~9;=:[;(%)“¢1;1ﬁ(§dﬁ_-§)n.i (19)

Summing up 2/ Q. and 9; 1, we will get the full secular motion of

an ascending node that would take into account the terms of the second order

in relations to the contraction of the Earth2

g::__(glf w5t J (2 cosi (12 sinti — 3
: / a>(1_eg>2nxj(o cosz(6sm2z——2- n+1

-+ D (%)4 cosi (% sini — g-) n, (20)

%

2

nts J and D are accurate only to the

terms with the coeffici

-~ B4

where th

4]

first power of orbital eccentricity.
Expression (20) enables us to the ellipticity of the terrestrial sphe-
roid if the cobserved motion of the node is known.

6. Determining the Earth's Oblateness by the
Observed Motion of a Node

To cite an example of the application of the above-developed theoreti-
cal expression of the motion of a node, we will calculate the oblateness of
the Earth by using the elements of the second Soviet earth satellite men-
tioned in the work of King-Hele and iierson (1958), and the observed magni-
tude of the diurmal motion of the node to epoch 4.0 of January 1958 as in-
dicated by King-tele (1958). Since the elements of the January 4.0 datum
are missing, we will define them by an interpolation between the two systems
of elements nearest to that datum. We will get the following initial data:

Epoch 1958 January 4.0

P = 100.503m (draconic period)
a = 7161.19 km

e = 0.0802

i = 69.29°

0 = 2.814°

1. Here for purposes of uniformity, the coefficient of the secular per-
turbation of the longitude of a first order ncde in relation to J is

designated as i';. ’
2. A similar formuld was developed in King-Hele's work [1958] but it was

non-osculating elements.

15
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We will assume the large semiaxis of the terrestrial ellipsoid a' to
be ©,378.10 kilometers. To calculate the terms of the second order, where
the approximate values of the J and D coefficients would be sufficient, we

will assume that

J=10.001637, D= 0.0000106.
We will define the average motion n included in formula (20) by the

following formula
__ 36071440
D - (21)

Strictly speaking, the sidereal rather thén the draconic period should
be used in formula (2l1), but the error involved in this is so insignificant
that it may be disregarded.

After the substitution of all these data in (20), we will get the fol-

lowing coefficient of J: J==0.001628.

The oblateness of the Earth &' we will find by the following formula

P m e2 em

assuming that m = 3449.79 x 10 . 1In this case, the reciprocal of the

Earth's oblateness is equal to

1-=2979.
This value should be somewhat increased by a more thorough calculation
of the average motion.
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